

Breaking 109 rays/sec
Ian Mallett

Breaking 109 rays/sec
Ian Mallett

Overview

● Lots of fancy optimizations & lots of challenges

● Finished “idea 1” from original proposal: the stack-
based scene-caching thing

● Gotten 1,000,000,000 rays/second with reasonably
sized chip! Mission accomplished?

Important Optimizations

● Sidestep traversal (skip parent nodes)

Important Optimizations

● Elision of nodes where only one child hit in
traversal (subtract one from depth of later nodes)

Node B is elided . . .

. . . since in this traversal,
node D's bounding box
didn't intersect the ray.

Important Optimizations

● Miscellaneous other for BVH:
– Miscellaneous mentioned last time

● Faster ray/box intersection
● Nearest first & early termination
● Non-recursive traversal

– Miscellaneous fancy unmentioned stuff
● Triangle edges, not verts
● Relative pointers (TODO?)
● Special shadow ray traversal (TODO)

Important Optimizations

● Impact of optimizations:
– Recursive (and so no sidestep or elision):

–

– Nonrecursive (with sidestep and elision):

–

Important Optimizations

● Miscellaneous micro-optimization

– Not sorry about this. Worth it.

● Sometimes didn't play nicely with compiler / simulator . . .

– Placement new, std:: library stuff

– Unimplemented instructions

– Cycle counter

– Danny fixes all! Thanks!

Challenges

● Pointer arithmetic nightmare!

● Concurrent deletion within thread (i.e., node A's load
triggers a delete, which requires node A to move within
memory)

● Deletion in general (surprisingly difficult algorithm!)

● Implementation issues

● Slow compiles/runs (esp. larger scenes)

● EGSR paper deadline

● Ran out of coffee

Finished Idea 1 of 3!

100% stack!

Too big!

The Performance/Area Graph

● Main result: broke 109 rays/second with reasonably sized chip on
decently sized dynamically-loaded scene (conference)

● Hand-generated some configurations to produce performance vs.
area graph (next page)

The Performance/Area Graph

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

area (mm^2)

m
eg

ar
ay

s/
se

c.

TODO

● Now what? Remaining (original) two ideas:
– 2: Bitmap coarse-traversal

● Traversal is already ludicrously complicated. Well, very, anyway.
● Requires hacking BVH building. Thoughts?

– 3: Ray rescheduling (req. 2) (was “stretch goal”)

● Still have room for optimization
– Ray packets

– Other datastructure (I changed node size)

● New ideas? 1010 rays/second???

Questions?

Image Credits

● http://bryanwagstaff.com/wp-content/uploads/2013/10/ds_heap.png
● http://childrenshungerfund.org/missiondh/images/mission_accomplished_stamp@2x.33fc251e.png
● me
● other?

http://bryanwagstaff.com/wp-content/uploads/2013/10/ds_heap.png
http://childrenshungerfund.org/missiondh/images/mission_accomplished_stamp@2x.33fc251e.png

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

