UFP Darkstar

Artwork.

Completed 2019-03-21. Available releases:

Direct Link DeviantArt Discord Pluspora (Archived)

This is a rendition of a "laserstar"—that is, a warship with a big laser designed for extremely-long-range standoff tactics.

In space, higher frequencies for laser weapons are preferred for two reasons: (1) higher frequencies diffract less and therefore the beam can stay focused for a longer distance and (2) higher frequencies are better-absorbed by just-about every material (in a laser weapon you want the target to absorb as much of the beam as possible).

Therefore, a typical laserstar design uses some kind of "XFEL"—that is, an X-ray free-electron laser, named for the frequency range (the wide spectrum of X-rays) and the underlying technology used to generate the beam.

XFELs, like most FELs, can be surprisingly efficient in terms of converting electrical power into coherent light. Nevertheless, there is still inefficiency, and of course there is also the inefficiency of the reactor itself. Wherefore we need the enormous radiator fins you see on the back of the ship. Note that the radiators are behind the wing-like protrusions. This is deliberate: it shields them from incoming fire. Aesthetically, I initially wanted the radiators to come out vertically above and below, but I recognized that that would be unrealistic. Only the best for you.

The wing-like things are canted forward by a significant amount, the better to present an angle to oncoming fire (slanted armor is OP). They also have two conical depressions, which are actually rocket nozzles. These face back along the direction of fire so that the ship can be decelerating toward or fleeing from a target, while still being able to bring its laser to bear on that target. This is important because, unlike a conventional laser or kinetic weapon, X-rays don't bend well, so the ship really must be pointing in the exact direction it wants to fire.

In fact, lenses don't work at all at such high frequencies. Designers must use grazing-incidence mirrors to shape the beam. Even so, much energy is lost in a grazing-incidence mirror, and the excess energy must be radiated away as heat. This explains the huge hexagonal structure coming out the front, and the six radiator fins sticking out from each focusing ring.

Even despite the high frequency, some tiny fraction of the light diffracts toward the camera, bathing it in a cancerous wash of ionizing radiation. X-rays are invisible, of course, but, being hard radiation, they are perfectly capable of flipping random bits in, for example, a photoreceptor, giving the appearance of fake visible light. This happens stochastically, explaining why you see random speckles of red, green, and blue color (nearly all cameras ever are RGB). In the original drawing, there are more green speckles than other colors because typical camera Bayer filters have more green than blue or red (since human eyes are more sensitive to green, it makes sense to have more sample area devoted to green; this leads to more bitflips on green subpixels), but my scanner appears to have made most of them white.

The sphere in the background was originally intended to be Earth after an apocalyptic war à la Children of a Dead Earth (the existence of laserstars would prove, among other things, my firmly held belief that humans are lacking in good sense). However, since Earth with boiled oceans would have dense, white cloud cover obscuring everything on the surface, you can feasibly imagine it's a wide variety of planets or moons as you please.


Return to visual art listing.